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UNIT-II 

Greedy method: General method, Knapsack problem, Job sequencing with deadlines, Minimum 

cost spanning  trees, Optimal storage on tapes, Single source shortest paths. 

 

Greedy method is the most straightforward designed technique. 

 

As the name suggest they are short sighted in their approach taking decision on the basis 

of the information immediately at the hand without worrying about the effect these 

decision may have in the future. 

DEFINITION: 

 

A problem with N inputs will have some constraints .any subsets that satisfy these 

constraints are called a feasible solution. 

A feasible solution that either maximize can minimize a given objectives function is 

called an optimal solution. 

GENERAL METHOD: 

Control algorithm for Greedy Method: 

1.Algorithm Greedy (a,n) 

2.//a[1:n] contain the ‘n’ inputs 

3.{ 

4.solution =0;//Initialise the solution. 

5.For i=1 to n do 

6.{ 

7.x=select(a); 

8.if(feasible(solution,x))then 

9.solution=union(solution,x); 

10.} 

11.return solution; 

12.} 

* The function select an input from a[] and removes it. The select input value is assigned 

to X.Feasible is a Boolean value function that determines whether X can be included into 

the solution vector. 

The function Union combines X with The solution and updates the objective 

function. 
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The function Greedy describes the essential way that a greedy algorithm will once a 

particular problem is chosen ands the function subset, feasible & union are properly 

implemented. 

2.1. KNAPSACK PROBLEM 

we are given n objects and knapsack or bag with capacity m  object i  has a weight       Wi 

where  i  varies from 1 to n. 

The problem is we have to fill the bag with the help of n objects and the resulting profit 

has to be maximum. 

Formally the problem can be stated as 

Maximize 1<=i<=n Ʃ xipi  

subject to 1<=i<=n Ʃ xiwi < = m 

Where xi is the fraction of object and it lies between 0 to 1. 

 

There are so many ways to solve this problem, which will give many feasible 

solution for which we have to find the optimal solution. 

But in this algorithm, it will generate only one solution which is going to be 

feasible as well as optimal. 

First, we find the profit & weight rates of each and every object and sort it according to 

the descending order of the ratios. 

Select an object with highest p/w ratio and check whether its height is lesser than the 

capacity of the bag. 

If so place 1 unit of the first object and decrement .the capacity of the bag by the weight 

of the object you have placed. 

Repeat the above steps until the capacity of the bag becomes less than the weight of the 

object you have selected .in this case place a fraction of the object and come out of the 

loop. 

Whenever you selected.  

ALGORITHM: 

1.Algorithm Greedy knapsack (m,n) 

2//P[1:n] and the w[1:n]contain the profit 3.// 

& weight res’.of the n object ordered. 4.//such 

that p[i]/w[i] >=p[i+1]/W[i+1] 
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5.//n is the Knapsack size and x[1:n] is the solution vertex. 6.{ 

7. for I=1 to n do a[I]=0.0; 

8.U=n; 

9.For I=1 to n do 

10.{ 

11.if (w[i]>u)then break; 

13.x[i]=1.0;U=U-w[i] 

14.} 

15.if(i<=n)then 

x[i]=U/w[i]; 16.} 

Example: 

Capacity=20 

N=3,M=20 

Wi=18,15,10 

Pi=25,24,15  Pi/Wi=25/18=1.36, 

24/15=1.6,      15/10=1.5 

Descending Order Pi/Wi 1.6 1.5 1.36 

 
Pi = 24 15 25 

Wi =  15 10 18 

Xi = 1 5/10 0 

PiXi=1*24+0.5*15 31.5 

The optimal solution is 31.5 

 
X1  X2  X3 WiXi PiXi 

½    1/3  ¼ 16.6 24.25 

1 2/5 0 20 18.2 

0 2/3 1 20 31 

0 1 ½ 20 31.5 

Of these feasible solution Solution 4 yield the Max profit .As we shall soon see this 

solution is optimal for the given problem instance. 
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2.2. JOB SCHEDULING WITH DEAD LINES 

The problem is the number of jobs, their profit and deadlines will be given and we have 

to find a sequence of job, which will be completed within its deadlines, and it should yield 

a maximum profit. 

Points To remember: 

To complete a job, one has to process the job or a action for one unit of time. Only 

one machine is available for processing jobs. 

A feasible solution for this problem is a subset of  j of jobs such that each job in      this 

subject can be completed by this deadline. 

If we select a job at that time , 

 

Since one job can be processed in a single m/c. The other job has to be in its        waiting 

state until the job is completed and the machine becomes free. 

So the waiting time and the processing time should be less than or equal to the                     dead 

line of the job. 

ALGORITHM: 

Algorithm JS(d,j,n) 

//The job are ordered such that p[1]>p[2]…>p[n] //j[i] 

is the ith job in the optimal solution 

// Also at terminal d [ J[ i]<=d[ J {i+1],1<i<k 

{ 

d[0]= J[0]=0; 
 

{ // consider jobs in non increasing order of P[I];find the position for I and check 

feasibility insertion 

r=k; 

while((d[J[r]]>d[i] )and 

(d[J[r]] = r)do r =r-1; 
 

if (d[J[r]]<d[I])and (d[I]>r))then 

{ 

for q=k to (r+1) step –1 do J [q+1]=j[q] 

J[r+1]=i; 

} 

} 
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return k; 

} 

 

 
1. n=5 (P1,P2,…P5)=(20,15,10,5,1) 

 

(d1,d2….d3)=(2,2,1,3,3) 
 

feasible solution Processing Sequence Value 

(1) (1) 
 

20 

(2) (2) 
 

15 

(3) (3) 
 

10 

(4) (4) 
 

5 

(5) (5) 
 

1 

1,2) (2,1) 
 

35 

(1,3) (3,1) 
 

30 

(1,4) (1,4) 
 

25 

(1,5) (1,5) 
 

21 

(2,3) (3,2) 
 

25 

(2,4) (2,4) 
 

20 

(2,5) (2,5) 
 

16 

(1,2,3) (3,2,1) 
 

45 

(1,2,4) (1,2,4) 
 

40 

 
The Solution 13 is optimal 

   

n=4 (P1,P2,…P4)=(100,10,15,27) 

(d1,d2….d4)=(2,1,2,1) 

 
Feasible solution 

 
Processing Sequence 

 
Value 

(1,2) (2,1) 110 
 

(1,3) (1,3) 115 
 

(1,4) (4,1) 127 
 

(2,3) (9,3) 25 
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(2,4) (4,2) 37 
 

(3,4) (4,3) 42 
 

(1) (1) 100 
 

 
 

 
 

 

(2) (2) 10 

(3) (3) 15 

(4) (4) 27 
 

The solution 3 is optimal.  

2.3 .MINIMUM COST SPANNING 

TREE 

Let G(V,E) be an undirected connected graph with vertices ‘v’ and edge ‘E’. A 

sub-graph t=(V,E’) of the G is a Spanning tree of G iff ‘t’ is a tree. 

The problem is to generate a graph G’= (V,E) where ‘E’ is the subset of E,G’ is a 

Minimum spanning tree. 

Each and every edge will contain the given non-negative length .connect all the nodes 

with edge present in set E’ and weight has to be minimum. 

NOTE: 

We have to visit all the nodes. 

 

The subset tree (i.e) any connected graph with ‘N’ vertices must have at least N-1 edges 

and also it does not form a cycle. 

Definition: 

 

A spanning tree of a graph is an undirected tree consisting of only those edge that       are 

necessary to connect all the vertices in the original graph. 

A Spanning tree has a property that for any pair of vertices there exist only one path 

between them and the insertion of an edge to a spanning tree form a unique cycle. 

 

SPANNING TREE: - A Sub graph ‘n’ of o graph ‘G’ is called as a spanning tree if 

(i) It includes all the vertices of ‘G’ 

(ii) It is a tree 
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Application of the spanning tree: 

1. Analysis of electrical circuit. 

2. Shortest route problems. 

2.3.1 METHODS OF MINIMUM COST SPANNING TREE: 

 

The cost of a spanning tree is the sum of cost of the edges in that trees. There are 2 

method to determine a minimum cost spanning tree are 

 

1. Kruskal’s Algorithm 

2. Prom’s Algorithm. 

 

2.3.2 Kruskal’s algorithm: 

 

 
In kruskal's algorithm the selection function chooses edges in increasing order of 

length without worrying too much about their connection to previously chosen edges, 

except that never to form a cycle. The result is a forest of trees that grows until all the 

trees in a forest (all the components) merge in a single tree. 

 

In this algorithm, a minimum cost-spanning tree ‘T’ is built edge by edge. Edge 

are considered for inclusion in ‘T’ in increasing order of their cost. 

An edge is included in ‘T’ if it doesn’t form a cycle with edge already in T. 

 

To find the minimum cost spanning tree the edge are inserted to tree in increasing order of 

their cost 

Algorithm: 

Algorithm kruskal(E,cost,n,t) 

//E set of edges in G has ‘n’ vertices. 

//cost[u,v] cost of edge (u,v).t set of edge in minimum cost spanning tree 

// the first cost is returned. 

{ 
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for i=1 to n do parent[I]=-1; I=0; 

mincost=0.0;  

While((I<n-1)and (heap not empty)) do 

{ 

j=find(n); 

k=find(v); 

if(j not equal k) than 

{ 

i=i+1 

t[i,1]=u; 

t[i,2]=v; 

mincost=mincost+cost[u,v]; 

union(j,k); 

} 

 

} 

if(i notequal n-1) then write(“No spanning tree”) 

else return minimum cost; 

} 

Analysis 

 

The time complexity of minimum cost spanning tree algorithm in worst case is 

O(|E|log|E|), 

where E is the edge set of G. 

 
Example: Step by Step operation of Kurskal algorithm. 

 

Step 1. In the graph, the Edge(g, h) is shortest. Either vertex g or vertex h could be 

representative. Lets choose vertex g arbitrarily. 
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Step 2. The edge (c, i) creates the second tree. Choose vertex c as representative 

for second tree. 

 

Step 3. Edge (g, g) is the next shortest edge. Add this edge and choose vertex g 

as representative. 
 

 
 

Step 4. Edge (a, b) creates a third tree. 

Step 5. Add edge (c, f) and merge two trees. Vertex c is chosen as the 

representative. 

 

Step 6. Edge (g, i) is the next next cheapest, but if we add this edge a cycle would 

be created. Vertex c is the representative of both. 

Step 7. Instead, add edge (c, d). 
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Step 8. If we add edge (h, i), edge(h, i) would make a cycle. 

 
 

Step 9. Instead of adding edge (h, i) add edge (a, h). 

Step 10. Again, if we add edge (b, c), it would create a cycle. Add edge (d, e) 

instead to complete the spanning tree. In this spanning tree all trees joined and 

vertex c is a sole representative. 

 
 
 
 
 
 

2.3.3PRIM'S ALGORITHM 

Start from an arbitrary vertex (root). At each stage, add a new branch (edge) to the tree 

already constructed; the algorithm halts when all the vertices in the graph have been 
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reached. 

Algorithm prims(e,cost,n,t) 

{ 

Let (k,l) be an edge of minimum cost in E; 

Mincost :=cost[k,l]; 

T[1,1]:=k; t[1,2]:=l; 

For I:=1 to n do 

If (cost[i,l]<cost[i,k]) then near[i]:=l; 

Else near[i]:=k; 

Near[k]:=near[l]:=0; 

For i:=2 to n-1 do 

{ 

 

Let j be an index such that near[j]≠0 and 

Cost[j,near[j]] is minimum; 

T[i,1]:=j; t[i,2]:=near[j]; 

Mincost:=mincost+ Cost[j,near[j]]; 

Near[j]:=0; 

For k:=0 to n do 

If near((near[k]≠0) and (Cost[k,near[k]]>cost[k,j])) then 

Near[k]:=j; 

} 

 

Return mincost; 

} 

The prims algorithm will start with a tree that includes only a minimum cost edge of 

G. 

Then, edges are added to the tree one by one. the next edge (i,j) to be added in such 

that I is a vertex included in the tree, j is a vertex not yet included, and cost of (i,j), 

cost[i,j] is minimum among all the edges. 
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14. The working of prims will be explained by following diagram 

Step 1: Step 2: 

Step 3: Step 4: 
 

 

Step 5: Step 6: 

 
 
 

2.4 OPTIMAL STORAGE ON TAPES : 

 

There are ‘n’ programs that are to be stored on a computer tape of length ‘L’. Each program ‘i’ is 

of length li, 1 ≤ i ≤ n. All the programs can be stored on the tape if and only if the sum of the lengths 

of the programs is at most ‘L’. We shall assume that whenever a program is to be retrieved from this 

tape, the tape is initially positioned at the front. If the programs are stored in the order i = i1, i2, . . . . . , 

in, the time tJ needed to retrieve program iJ is proportional to  l i k 1  k  j 74 If all the programs 

are retrieved equally often then the expected or mean retrieval time (MRT) is: 1 .  t n 1  J  n j For 

the optimal storage on tape problem, we are required to find the permutation for the ‘n’ programs so 

that when they are stored on the tape in this order the MRT is minimized. d (I)  n  J  1 J  K  1 

l i k Example Let n = 3, (l1, l2, l3) = (5, 10, 3). Then find the optimal ordering? Solution: There are n! 

= 6 possible orderings.  

They are:  

Ordering I                                     d(I) 

 1, 2, 3                                        5 + (5 +10) +(5 + 10 + 3) = 38  

1, 3, 2                                         5 + (5 + 3) + (5 + 3 + 10) = 31  

2, 1, 3                                        10 + (10 + 5) + (10 + 5 + 3) = 43 

  2, 3, 1                                        10 + (10 + 3) + (10 + 3 + 5) = 41 
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 3, 1, 2                                              3 + (3 + 5) + (3 + 5 + 10) = 29 

 3, 2, 1                                              3 + (3 + 10) + (3 + 10 + 5) = 34  

 

From the above, it simply requires to store the programs in non-decreasing order (increasing order) 

of their lengths. This can be carried out by using a efficient sorting algorithm (Heap sort). This 

ordering can be carried out in O (n log n) time using heap sort algorithm. The tape storage problem 

can be extended to several tapes. If there are m  1 tapes, To,............ ,Tm – 1, then the programs are 

to be distributed over these tapes. m 1 The total retrieval time (RT) is  J 0 d(IJ ) The objective 

is to store the programs in such a way as to minimize RT. The programs are to be sorted in non 

decreasing order of their lengths li’s, l1 < l2 < .. . .. . . ln. The first ‘m’ programs will be assigned to 

tapes To, ........,Tm-1 respectively. The next ‘m’ programs will be assigned to T0, . . . . ,Tm-1 

respectively. The general rule is that program i is stored on tape Ti mod m. 75 Algorithm: The 

algorithm for assigning programs to tapes is as follows: Algorithm Store (n, m) // n is the number of 

programs and m the number of tapes { j := 0; // next tape to store on for i :=1 to n do { Print 

(‘append program’, i, ‘to permutation for tape’, j); j := (j + 1) mod m; } } On any given tape, the 

programs are stored in non-decreasing order of their lengths 

2.5 SINGLE-SOURCE SHORTEST PATH: 

 

Graphs can be used to represent the highway structure of a state or country with 

vertices representing cities and edges representing sections of highway. The edges can 

then be assigned weights which may be either the distance between the two cities 

connected by the edge or the average time to drive along that section of highway. A 

motorist wishing to drive from city A to B would be interested in answers to the 

following questions: 

 

 
o Is there a path from A to B? 

o If there is more than one path from A to B? Which is the shortest path? 

 

 
The problems defined by these questions are special case of the path problem we study in 

this section. The length of a path is now defined to be the sum of the weights of the edges 

on that path. The starting vertex of the path is referred to as the source and the last 

vertex the destination. The graphs are digraphs representing streets. Consider a digraph 

G=(V,E), with the distance to be traveled as weights on the edges. The problem is to 

determine the shortest path from v0 to all the remaining vertices of G. It is assumed that 
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all the weights associated with the edges are positive. The shortest path between v0 and 

some other node v is an ordering among a subset of the edges. Hence this problem fits the 

ordering paradigm. 

Example: 

Consider the digraph of fig 7- 1. Let the numbers on the edges be the costs of travelling along that 

route. If a person is interested travel from v1 to v2, then he encounters many paths. Some of them 

are 

o v1 v2 = 50 units 

o v1 v3 v4 v2 = 10+15+20=45 units 

o v1 v5 v4 v2 = 45+30+20= 95 units 

o v1 v3 v4 v5  v4 v2 = 10+15+35+30+20=110 units 

 
The cheapest path among these is the path along v1 v3 v4 v2. The cost of the path 

is 10+15+20 = 45 units. Even though there are three edges on this path, it is cheaper than 

travelling along the path connecting v1 and v2 directly i.e., the path v1 v2 that costs 50 

units. One can also notice that, it is not possible to travel to v6 from any other node. 

To formulate a greedy based algorithm to generate the cheapest paths, we must 

conceive a multistage solution to the problem and also of an optimization measure. One 

possibility is to build the shortest paths one by one. As an optimization measure we can 

use the sum of the lengths of all paths so far generated. For this measure to be minimized, 

each individual path must be of minimum length. If we have already constructed i 

shortest paths, then using this optimization measure, the next path to be constructed 

should be the next shortest minimum length path. The greedy way to generate these paths 

in non-decreasing order of path length. First, a shortest path to the nearest vertex is 

generated. Then a shortest path to the second nearest vertex is generated, and so on. 

 

A much simpler method would be to solve it using matrix representation. 

The steps that should be followed is as follows, 

Step 1: find the adjacency matrix for the given graph. The adjacency matrix for fig 

7.1 is given below 



 

 
 V1 V2 V3 V4 V5 V6 

V1 - 50 10 ∞ 45 ∞ 

V2 ∞ - 15 ∞ 10 ∞ 

V3 20 ∞ - 15 ∞ ∞ 

V4 ∞ 20 ∞ - 35 ∞ 

V5 ∞ ∞ ∞ 30 - ∞ 

V6 
 

∞ 

 

∞ 

 

∞ 

 

3 
 

∞ 

 

- 

 

 

Step 2: consider v1 to be the source and choose the minimum entry in the row v1. 

In the above table the minimum in row v1 is 10. 

 

 
Step 3: find out the column in which the minimum is present, for the above 

example it is column v3. Hence, this is the node that has to be next visited. 

 

 
Step 4: compute a matrix by eliminating v1 and v3 columns. Initially retain only 

row v1. The second row is computed by adding 10 to all values of row v3. 

 

The resulting matrix is 
 
 
 
 

 V2 V4 V5 V6 

V1 Vw 50 ∞ 45 ∞ 

V1 V3 Vw 10+∞ 10+15 10+∞ 10+∞ 

Minimum 
 

50 
 

25 
 

45 
 

∞ 
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Step 5: find the minimum in each column. Now select the minimum from the 

resulting row. In the above example the minimum is 25. Repeat step 3 followed by 

step 4 till all vertices are covered or single column is left. 

The solution for the fig 7.1 can be continued as follows 
 
 
 
 

 V2 V5   V6 

V1 Vw 50 45 
  

Inf 

V1 V3 V4 25+20 
 

25+35 
  

25+inf 

Vw      

Minimum 
 

45 
 

45 

   

inf 

      

 
V5 V6 

   

V1 Vw 45 Inf 
   

V1   V3 V4   V2 45+10 45+inf 
  

Vw      

Minimum 45 
 

Inf 

   

   
   

  
V6 

   

V1 Vw 
 

Inf 
   

V1 V3 V4   V2 V5 
 

45+inf 
   

Vw      

Minimum 
  

inf 
   

 

Finally the cheapest path from v1 to all other vertices is given by V1 V3 V4 V2 V5. 
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